Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Neurol Neurosurg ; 237: 108153, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350174

RESUMEN

OBJECTIVES: The geometry of carotid bifurcation is a crucial contributing factor to the localization of atherosclerotic lesions. Currently, studies on carotid bifurcation geometry are limited to the region near to bifurcation. This study aimed to determine the influence of carotid bifurcation geometry on the blood flow using numerical simulations considering magnitude of haemodynamic parameters in the extended regions of carotid artery. METHODS: In the present study, haemodynamic analysis is carried out using the non-Newtonian viscosity model for patient-specific geometries consisting of both Left and Right carotid arteries. A 3D patient-specific geometric model is generated using MIMICS, and a numerical model is created using ANSYS. RESULTS: The results obtained from patient-specific cases are compared. The influence of geometric features such as lumen diameter, bifurcation angle, and tortuosity on the haemodynamics parameters such as velocity, WSS, pressure, Oscillatory Shear Index (OSI), and Time-Averaged Wall Shear Stress (TAWSS) are compared. CONCLUSION: The results demonstrate significant changes in the flow regime due to the geometric shape of the carotid artery. It is observed that the lower value of TAWSS occurs near the bifurcation region and carotid bulb region. In addition, the higher value of the (OSI) is observed in the Internal Carotid Artery (ICA) and the tortuous carotid artery region. However, it is also observed that apart from the bifurcation angle, other factors, such as tortuosity and area ratio, play a significant role in the flow dynamics of the carotid artery.


Asunto(s)
Arterias Carótidas , Hemodinámica , Humanos , Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Viscosidad , Velocidad del Flujo Sanguíneo/fisiología , Estrés Mecánico
2.
Biomed Phys Eng Express ; 10(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38227968

RESUMEN

Ureters are essential components of the urinary system and play a crucial role in the transportation of urine from the kidneys to the bladder. In the current study, a three-dimensional ureter is modelled. A series of peristaltic waves are made to travel on the ureter wall to analyse and measure parameter effects such as pressure, velocity, gradient pressure, and wall shear at different time steps. The flow dynamics in the ureters are thoroughly analysed using the commercially available ANSYS-CFX software. The maximum pressure is found in the triple wave at the ureteropelvic junction and maximum velocity is observed in the single and double wave motion due to the contraction produced by the peristalsis motion. The pressure gradient is maximum at the inlet of the ureter during the single bolus motion. The contraction produces a high jet of velocity due to neck formation and also helps in urine trapping in the form of a bolus, which leads to the formation of reverse flow. Due to the reduction in area, shear stress builds on the ureter wall. The high shear stress may rupture the junctions in the ureter.


Asunto(s)
Uréter , Peristaltismo , Modelos Biológicos , Presión , Vejiga Urinaria
3.
Appl Bionics Biomech ; 2022: 9612296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498142

RESUMEN

The mechanical heart valve (MHV) is commonly used for the treatment of cardiovascular diseases. Nonphysiological hemodynamic in the MHV may cause hemolysis, platelet activation, and an increased risk of thromboembolism. Thromboembolism may cause severe complications and valve dysfunction. This paper thoroughly reviewed the simulation of physical quantities (velocity distribution, vortex formation, and shear stress) in healthy and dysfunctional MHV and reviewed the non-Newtonian blood flow characteristics in MHV. In the MHV numerical study, the dysfunction will affect the simulation results, increase the pressure gradient and shear stress, and change the blood flow patterns, increasing the risks of hemolysis and platelet activation. The blood flow passes downstream and has obvious recirculation and stagnation region with the increased dysfunction severity. Due to the complex structure of the MHV, the non-Newtonian shear-thinning viscosity blood characteristics become apparent in MHV simulations. The comparative study between Newtonian and non-Newtonian always shows the difference. The shear-thinning blood viscosity model is the basics to build the blood, also the blood exhibiting viscoelastic properties. More details are needed to establish a complete and more realistic simulation.

4.
Comput Methods Programs Biomed ; 210: 106378, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34507083

RESUMEN

BACKGROUND AND OBJECTIVE: The bladder receives the urine from the kidney and ureter. The series of peristaltic waves facilitate urine transport to the bladder. The peristaltic flow in the ureter is associated with fluid trapping and material reflux, which may cause an increase in bladder pressure. It is difficult to visualize the complex peristalsis phenomenon, in the ureter using image and radiography experiments. A numerical simulation will help in the understanding of urine bolus formation and its effect on the ureter wall. METHODS: A three-dimensional computational fluid dynamic analysis is carried out to understand the flow physics associated with bolus formation and the effect of reflux on the ureter. ANSYS-CFX, a commercially available computational dynamics package is used to simulate the peristalsis. A single sinusoidal peristaltic wave traveling along a circular tube will yield the velocity, pressure, wall shear stress distributions inside the ureter. RESULTS: The propagation of the peristaltic wave results in the backflow of urine near the inlet at the beginning of the flow. As the wave propagates towards the outlet, the flow rate decreases. It is observed that pressure distribution along the ureter axis will deteriorate towards the outlet. The contraction produces a very high-pressure gradient which causes the urine backflow. The trapping and the bolus formation cause a significant rise in bolus pressure, simultaneously developing negative pressure at the contraction neck. CONCLUSIONS: The effect of peristalsis on the ureter biofluid dynamic behavior of the ureter is visualized in this study. It is established that the peristaltic contraction results in high-pressure formation at the bolus and negative pressure at the neck. It was found to be a maximum of 1.1 Pa at the bolus center and -1.13 Pa at the neck region. At the ureter pelvis junction, a higher wall shear of 0.095 Pa is observed as the wave starts to propagate. The velocity vectors show that the trapping of urine causes reflux and results in an adverse pressure gradient near the wall. A maximum pressure gradient of 485 Pa/meter was observed at the contraction of the ureter wall.


Asunto(s)
Peristaltismo , Uréter , Simulación por Computador , Presión , Estrés Mecánico , Uréter/diagnóstico por imagen
5.
Comput Math Methods Med ; 2020: 9163085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32454886

RESUMEN

This study investigated the impact of paravalvular leakage (PVL) in relation to the different valve openings of the transcatheter aortic valve implantation (TAVI) valve using the fluid structure interaction (FSI) approach. Limited studies were found on the subject of FSI with regards to TAVI-PVL condition, which involves both fluid and structural responses in coupling interaction. Hence, further FSI simulation with the two-way coupling method is implemented to investigate the effects of hemodynamics blood flow along the patient-specific aorta model subjected to the interrelationship between PVL and the different valve openings using the established FSI software ANSYS 16.1. A 3D patient-specific aorta model is constructed using MIMICS software. The TAVI valve identical to Edward SAPIEN XT 26 (Edwards Lifesciences, Irvine, California), at different Geometrical Orifice Areas (GOAs), is implanted into the patient's aortic annulus. The leaflet opening of the TAVI valve is drawn according to severity of GOA opening represented in terms of 100%, 80%, 60%, and 40% opening, respectively. The result proved that the smallest percentage of GOA opening produced the highest possibility of PVL, increased the recirculatory flow proximally to the inner wall of the ascending aorta, and produced lower backflow velocity streamlines through the side area of PVL region. Overall, 40% GOA produced 89.17% increment of maximum velocity magnitude, 19.97% of pressure drop, 65.70% of maximum WSS magnitude, and a decrement of 33.62% total displacement magnitude with respect to the 100% GOA.


Asunto(s)
Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Anciano , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Biología Computacional , Simulación por Computador , Prótesis Valvulares Cardíacas , Hemodinámica , Hemorreología , Humanos , Hidrodinámica , Imagenología Tridimensional , Masculino , Modelos Cardiovasculares , Modelación Específica para el Paciente/estadística & datos numéricos , Diseño de Prótesis , Tomografía Computarizada por Rayos X
7.
Med Biol Eng Comput ; 55(9): 1519-1548, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28744828

RESUMEN

Even though the mechanical heart valve (MHV) has been used routinely in clinical practice for over 60 years, the occurrence of serious complications such as blood clotting remains to be elucidated. This paper reviews the progress that has been made over the years in terms of numerical simulation method and the contribution of abnormal flow toward blood clotting from MHVs in the aortic position. It is believed that this review would likely be of interest to some readers in various disciplines, such as engineers, scientists, mathematicians and surgeons, to understand the phenomenon of blood clotting in MHVs through computational fluid dynamics.


Asunto(s)
Coagulación Sanguínea/fisiología , Válvulas Cardíacas/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Simulación por Computador , Prótesis Valvulares Cardíacas , Humanos , Flujo Pulsátil/fisiología
8.
Artif Organs ; 33(8): 604-10, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19624585

RESUMEN

This article describes the prediction of index of thrombus formation in shear blood flow by computational fluid dynamics with the Lattice Boltzmann Method (LBM), applying to backward-facing step flow, which is a simple model of shear flow in the rotary blood pumps and complicated geometry of medical fluid devices. Assuming that the blood flow is a multiphase flow composed of blood plasma and activated fibrinogen, the effects of surface tension and adhesion force to the wall were added to the LBM computational model. It was found that the thrombus formation in the backward-facing step flow occurred just after the reattachment point and behind the step. These results corresponded to our observation results of thrombus formation. For the thrombus formation in every case of blood flow to be predicted, effects of threshold level of physical parameters such as shear rate and adhesion force (effective distance from the wall) were estimated. Moreover, it was also found that the predicted adhesion point on the wall agrees with the visualization of thrombus formation by predicting proper thresholds.


Asunto(s)
Simulación por Computador , Corazón Auxiliar , Trombosis/fisiopatología , Velocidad del Flujo Sanguíneo , Diseño de Equipo , Fibrinógeno/metabolismo , Hemorreología , Humanos , Tensión Superficial
9.
Artif Organs ; 20(5): 553-559, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-28868711

RESUMEN

This study proposes a method of predicting hemolysis induced by turbulent shear stress (Reynolds stress) in a simplified orifice pipe flow. In developing centrifugal blood pumps, there has been a serious problem with hemolysis at the impeller or casing edge; because of flow separation and turbulence in these regions. In the present study, hemolysis caused by turbulent shear stress must occur at high shear stress levels in regions near the edge of an orifice pipe flow. We have computed turbulent shear flow using the low-Reynolds number k -ε model. We found that the computed turbulent shear stress near the edge was several hundreds times that of the laminar shear stress (molecular shear stress). The peak turbulent shear stress is much greater than that obtained in conventional hemolysis testing using a viscometer apparatus. Thus, these high turbulent shear stresses should not be ignored in estimating hemolysis in this blood flow. Using an integrated power by shear force, it is optimimal to determine the threshold of the turbulent shear stress by comparing computed stress levels with those of hemolysis experiments of pipe orifice blood flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...